
Object-Oriented Programming

Single Implementation Inheritance

• Inheritance is one of the fundamental mechanisms for code
reuse in OOP. It allows new classes to be derived from an
existing class.

• The new class (also called subclass, subtype, derived class,
child class) can inherit members from the old class (also
called superclass, supertype, base class, parent class).

• The subclass can add new behavior and properties and,
under certain circumstances, modify its inherited behavior.

Single Implementation Inheritance

 In Java, implementation inheritance is achieved
by extending classes (i.e., adding new fields and
methods) and modifying inherited members

Single Implementation Inheritance
• Inheritance of members is closely tied to their declared

accessibility. If a superclass member is accessible by its
simple name in the subclass (without the use of any
extra syntax like super), that member is considered
inherited.

• This means that private, overridden, and hidden
members of the superclass are not inherited

• Inheritance should not be confused with the existence
of such members in the state of a subclass object

Single Implementation Inheritance

• The superclass is specified using the extends
clause in the header of the subclass
declaration.

• The subclass only specifies the additional new
and modified members in its class body.

• The rest of its declaration is made up of its
inherited members.

Single Implementation Inheritance

• If no extends clause is specified in the header
of a class declaration, the class implicitly
inherits from the java.lang.Object class.

• This implicit inheritance is assumed in the
declaration of the Light class at (1) in Example

class Light { // (1)

 // Instance fields:

 int noOfWatts; // wattage

 private boolean indicator; // on or off

 protected String location; // placement

 // Static field:

 private static int counter; // no. of Light objects created

 // Constructor:

 Light() {

 noOfWatts = 50;

 indicator = true;

 location = "X";

 counter++;

 }

 // Instance methods:

 public void switchOn() { indicator = true; }

 public void switchOff(){ indicator = false; }

 public boolean isOn() { return indicator; }

 private void printLocation() {

 System.out.println("Location: " + location);

 }

 // Static methods:

 public static void writeCount() {

 System.out.println("Number of lights: " + counter);

 }

 //...

}

class TubeLight extends Light { // (2) extends

 // Instance fields:

 private int tubeLength = 54;

 private int colorNo = 10;

 // Instance methods:

 public int getTubeLength() { return tubeLength; }

 public void printInfo() {

 System.out.println("Tube length: " + getTubeLength());

 System.out.println("Color number: " + colorNo);

 System.out.println("Wattage: " + noOfWatts); // Inherited.

// System.out.println("Indicator: " + indicator); // Not Inherited.

 System.out.println("Indicator: " + isOn()); // Inherited.

 System.out.println("Location: " + location); // Inherited.

// printLocation(); // Not Inherited.

// System.out.println("Counter: " + counter); // Not Inherited.

 writeCount(); // Inherited.

 }

 // ...

}

//__

public class Utility { // (3)

 public static void main(String[] args) {

 new TubeLight().printInfo();

 }

}

Inheritance Hierarchy

• In Java, a class can only extend one other class; i.e., it
can only have one immediate superclass. This kind of
inheritance is sometimes called single or linear
implementation inheritance.

• The name is appropriate, as the subclass inherits the
implementations of its superclass members. The
inheritance relationship can be depicted as an
inheritance hierarchy (also called class hierarchy).

Relationships: is-a and has-a
Inheritance defines
the relationship is-a
(also called the
superclass–subclass
relationship) between
a superclass and its
subclasses.

Relationships: is-a and has-a
• Whereas inheritance defines the relationship is-a between a

superclass and its subclasses, aggregation defines the
relationship has-a (also called the whole–part relationship)
between an instance of a class and its constituents (also
called parts).

• Aggregation comprises the usage of objects. An instance of
class Light has (or uses) the following parts:
 a field to store its wattage (noOfWatts),
 a field to store whether it is on or off (indicator), and
 a String object to store its location (denoted by the field

reference location)

The Supertype-Subtype Relationship

 A class defines a reference type. Therefore the
inheritance hierarchy can be regarded as a type
hierarchy, embodying the supertype-subtype
relationship between reference types.

The Supertype-Subtype Relationship

• In the context of Java, the supertype-subtype
relationship implies that the reference value of a
subtype object can be assigned to a supertype
reference, because a subtype object can be
substituted for a supertype object.

• This assignment involves a widening reference
conversion as references are assigned up the
inheritance hierarchy.

The Supertype-Subtype Relationship
Examlple:
Light light = new TubeLight(); // (1) widening reference conversion

 We can now use the reference light to invoke those methods on the subtype
object that are inherited from the supertype Light:

light.switchOn(); // (2)

 Note that the compiler only knows about the declared type of the reference
light, which is Light, and ensures that only methods from this type can be
called using the reference light. However, at runtime, the reference light
will refer to an object of the subtype TubeLight when the call to the method
switchOn() is executed. It is the type of the object that the reference is
referring to at runtime that determines which method is executed.

The Supertype-Subtype Relationship

One might be tempted to invoke methods exclusive to the
TubeLight subtype via the supertype reference light:

light.getTubeLength(); // (3) Not OK.

However, this will not work, as the compiler does not know what
object the reference light is denoting. It only knows the declared
type of the reference. As the declaration of the class Light does not
have a method called getTubeLength(), this method call at (3)
results in a compile-time error.

Overriding Methods
Instance Method Overriding

Under certain circumstances, a subclass may
override instance methods that it would
otherwise inherit from a superclass.

The overridden method in the superclass is not
inherited by the subclass, and the new method
in the subclass must abide by the following rules
of method overriding:

Instance Method Overriding
• The new method definition must have the same method signature, i.e., the method

name, and the types and the number of parameters, including their order, are the
same as in the overridden method.
– Whether parameters in the overriding method should be final is at the discretion of the subclass. A

method's signature does not comprise the final modifier of parameters, only their types and order.

• The return type of the overriding method can be a subtype of the return type of the
overridden method (called covariant return).

• The new method definition cannot narrow the accessibility of the method, but it can
widen it.

• The new method definition can only throw all or none, or a subset of the checked
exceptions (including their subclasses) that are specified in the throws clause of the
overridden method in the superclass.

//Exceptions

class InvalidHoursException extends Exception {}

class NegativeHoursException extends InvalidHoursException {}

class ZeroHoursException extends InvalidHoursException {}

class Light {

 protected String billType = "Small bill"; // (1) Instance field

 protected double getBill(int noOfHours)

 throws InvalidHoursException { // (2) Instance method

 if (noOfHours < 0)

 throw new NegativeHoursException();

 double smallAmount = 10.0, smallBill = smallAmount * noOfHours;

 System.out.println(billType + ": " + smallBill);

 return smallBill;

 }

 public Light makeInstance() { // (3) Instance method

 return new Light();

 }

 public static void printBillType() { // (4) Static method

 System.out.println("Small bill");

 }

}

class TubeLight extends Light {

 public static String billType = "Large bill"; // (5) Hiding field at (1)

 @Override

 public double getBill(final int noOfHours)

 throws ZeroHoursException { // (6) Overriding instance method at (2)

 if (noOfHours == 0)

 throw new ZeroHoursException();

 double largeAmount = 100.0, largeBill = largeAmount * noOfHours;

 System.out.println(billType + ": " + largeBill);

 return largeBill;

 }

 public double getBill() { // (7) Overloading method at (6)

 System.out.println("No bill");

 return 0.0;

 }

 @Override

 public TubeLight makeInstance() {// (8) Overriding instance method at (3)

 return new TubeLight();

 }

 public static void printBillType() { // (9) Hiding static method at (4).

 System.out.println(billType);

 }

}

public class Client {

 public static void main(String[] args) throws InvalidHoursException { // (10)

 TubeLight tubeLight = new TubeLight(); // (11)

 Light light1 = tubeLight; // (12) Aliases

 Light light2 = new Light(); // (13)

 System.out.println("Invoke overridden instance method:");

 tubeLight.getBill(5); // (14) Invokes method at (6).

 light1.getBill(5); // (15) Invokes method at (6).

 light2.getBill(5); // (16) Invokes method at (2).

 System.out.println("Invoke overridden instance method with covariant return:");

 System.out.println(light2.makeInstance().getClass()); // (17) Invokes method at (3).

 System.out.println(tubeLight.makeInstance().getClass()); //(18)Invokes method at (8)

 System.out.println("Access hidden field:");

 System.out.println(tubeLight.billType); // (19) Accesses field at (5).

 System.out.println(light1.billType); // (20) Accesses field at (1).

 System.out.println(light2.billType); // (21) Accesses field at (1).

 System.out.println("Invoke hidden static method:");

 tubeLight.printBillType(); // (22) Invokes method at (9).

 light1.printBillType(); // (23) Invokes method at (4).

 light2.printBillType(); // (24) Invokes method at (4).

 System.out.println("Invoke overloaded method:");

 tubeLight.getBill(); // (25) Invokes method at (7).

 }

}

More facts about overriding
• A subclass must use the keyword super in order to invoke

an overridden method in the superclass
• An instance method in a subclass cannot override a static

method in the superclass.
• However, a static method in a subclass can hide a static

method in the superclass
• A final method cannot be overridden
• The accessibility modifier private for a method means that

the method is not accessible outside the class in which it is
defined; therefore, a subclass cannot override it.

Overriding vs. Overloading

Hiding Members - Field Hiding
• A subclass cannot override fields of the superclass, but it

can hide them.
• If this is the case, the fields in the superclass cannot be

accessed in the subclass by their simple names
• Code in the subclass can use the keyword super to access

such members, including hidden fields.
• A client can use a reference of the superclass to access

members that are hidden in the subclass
• If the hidden field is static, it can also be accessed by the

superclass name

Hiding Members - Static Method Hiding
• A static method cannot override an inherited instance

method, but it can hide a static method if the exact
requirements for overriding instance methods are fulfilled

• The compiler will flag an error if the signatures are the
same, but the other requirements regarding return type,
throws clause, and accessibility are not met.

• If the signatures are different, the method name is
overloaded, not hidden.

• A call to a static or final method is bound to a method
implementation at compile time (private methods are
implicitly final).

The Object Reference super
• The keyword super can be used in non-static code (e.g., in

the body of an instance method), but only in a subclass, to
access fields and invoke methods from the superclass

• The keyword super provides a reference to the current
object as an instance of its superclass

• Typically used to invoke methods that are overridden and to
access members that are hidden in the subclass

• Unlike the this keyword, the super keyword cannot be used
as an ordinary reference (it cannot be assigned to other
references or cast to other reference types)

class Light {

 protected String billType = "Small bill"; // (1)

 protected double getBill(int noOfHours)

 throws InvalidHoursException { // (2)

 if (noOfHours < 0)

 throw new NegativeHoursException();

 double smallAmount = 10.0, smallBill = smallAmount * noOfHours;

 System.out.println(billType + ": " + smallBill);

 return smallBill;

 }

 public static void printBillType() { // (3)

 System.out.println("Small bill");

 }

 public void banner() { // (4)

 System.out.println("Let there be light!");

 }

}

class TubeLight extends Light {

 public static String billType = "Large bill";

 // ^^^ (5) Hiding static field at (1).

 @Override

 public double getBill(final int noOfHours) throws ZeroHoursException {

 // (6) Overriding instance method at (2).

 if (noOfHours == 0)

 throw new ZeroHoursException();

 double largeAmount = 100.0, largeBill = largeAmount * noOfHours;

 System.out.println(billType + ": " + largeBill);

 return largeBill;

 }

 public static void printBillType() { // (7) Hiding static method at (3)

 System.out.println(billType);

 }

 public double getBill() { // (8) Overloading method at (6).

 System.out.println("No bill");

 return 0.0;

 }

}

class NeonLight extends TubeLight {

 // ...

 public void demonstrate() throws InvalidHoursException { // (9)

 super.banner(); // (10) Invokes method at (4)

 super.getBill(20); // (11) Invokes method at (6)

 super.getBill(); // (12) Invokes method at (8)

 ((Light) this).getBill(20); // (13) Invokes method at (6)

 System.out.println(super.billType); // (14) Accesses field at (5)

 System.out.println(((Light) this).billType); // (15)

 //Accesses field at (1)

 super.printBillType(); // (16) Invokes method at (7)

 ((Light) this).printBillType(); // (17) Invokes method at (3)

 }

}

Chaining Constructors Using this() and super()

• Constructors cannot be inherited or overridden.

• They can be overloaded, but only in the same class.

• Since a constructor always has the same name as the
class, each parameter list must be different when
defining more than one constructor for a class.

• The this() call invokes the local constructor with
the corresponding parameter list

• Java requires that any this() call must occur as the
first statement in a constructor.

Chaining Constructors Using this() and super()

• The super() construct is used in a subclass
constructor to invoke a constructor in the
immediate superclass.

• A super() call in the constructor of a subclass will
result in the execution of the relevant constructor
from the superclass, based on the signature of the
call.

Chaining Constructors Using this() and super()

• A constructor in a subclass can access the class’s
inherited members by their simple names.

• The keyword super can also be used in a subclass
constructor to access inherited members via its
superclass.

• One might be tempted to use the super keyword in a
constructor to specify initial values of inherited fields.

• However, the super() construct provides a better
solution to initialize the inherited state.

Chaining Constructors Using this() and super()

• The super() construct has the same restrictions
as the this() construct: if used, the super()
call must occur as the first statement in a
constructor, and it can only be used in a
constructor declaration.

• This implies that this() and super() calls
cannot both occur in the same constructor.

Interfaces
<accessibility modifier> interface <interface name>

 <extends interface clause> // Interface header

{ // Interface body

<constant declarations>

<abstract method declarations>

<nested class declarations>

<nested interface declarations>

}

Interfaces
The interface header can specify the following
information:
• scope or accessibility modifier
• any interfaces it extends
The interface body can contain member declarations
which comprise:
• constant declarations
• abstract method declarations
• nested class and interface declarations

Interfaces

• An interface does not provide any implementation
and is, therefore, abstract by definition.

• This means that it cannot be instantiated.

• Declaring an interface abstract is superfluous and
seldom done.

• Since interfaces are meant to be implemented by
classes, interface members implicitly have public
accessibility and the public modifier can be omitted.

Interfaces

• Interfaces with empty bodies can be used as
markers to tag classes as having a certain property
or behavior.

• Such interfaces are also called ability interfaces.
• Java APIs provide several examples of such marker

interfaces:
java.lang.Cloneable

java.io.Serializable

java.util.EventListener

Abstract Method Declarations
• An interface defines a contract by specifying a set of abstract

method declarations, but provides no implementations
• The methods in an interface are all implicitly abstract and

public by virtue of their definition.
• Only the modifiers abstract and public are allowed, but these

are invariably omitted.

<optional type parameter list> <return type>

 <method name> (<parameter list>)

 <throws clause>;

Implementing Interfaces

• Any class can elect to implement, wholly or partially,
zero or more interfaces.

• A class specifies the interfaces it implements as a
comma-separated list of unique interface names in
an implements clause in the class header.

• The interface methods must all have public
accessibility when implemented in the class (or its
subclasses).

Implementing Interfaces
• A class can neither narrow the accessibility of an interface

method nor specify new exceptions in the method’s throws
clause, as attempting to do so would amount to altering the
interface’s contract, which is illegal.

• The criteria for overriding methods also apply when
implementing interface methods.

• A class can provide implementations of methods declared
in an interface, but to reap the benefits of interfaces, the
class must also specify the interface name in its implements
clause.

Extending Interfaces
• An interface can extend other interfaces, using the extends

clause. Unlike extending classes, an interface can extend
several interfaces.

• The interfaces extended by an interface (directly or
indirectly) are called superinterfaces.

• Conversely, the interface is a subinterface of its
superinterfaces.

• Since interfaces define new reference types,
superinterfaces and subinterfaces are also supertypes and
subtypes, respectively.

Interfaces

Classes and Interfaces
Inheritance relations

1. Single implementation inheritance hierarchy between
classes: a class extends another class (subclasses–
superclasses).

2. Multiple inheritance hierarchy between interfaces: an
interface extends other interfaces (subinterfaces–
superinterfaces).

3. Multiple interface inheritance hierarchy between
interfaces and classes: a class implements interfaces.

Interface References

• Although interfaces cannot be instantiated,
references of an interface type can be declared.

• The reference value of an object can be assigned
to references of the object’s supertypes.

• The reference value of the object is assigned to
references of all the object’s supertypes, which
are used to manipulate the object.

Constants in Interfaces

• An interface can also define named constants.

• Such constants are defined by field declarations
and are considered to be public, static, and final.

• These modifiers can be omitted from the
declaration.

• Such a constant must be initialized with an
initializer expression

Constants in Interfaces

• An interface constant can be accessed by any client (a class
or interface) using its fully qualified name, regardless of
whether the client extends or implements its interface.

• However, if a client is a class that implements this interface
or an interface that extends this interface, then the client
can also access such constants directly by their simple
names, without resorting to the fully qualified name.

• Such a client inherits the interface constants.

Constants in Interfaces

• Extending an interface that has constants is analogous to
extending a class having static variables. In particular, these
constants can be hidden by the subinterfaces.

• In the case of multiple inheritance of interface constants,
any name conflicts can be resolved by using fully qualified
names for the constants involved.

• When defining a set of related constants, the
recommended practice is to use an enumerated type,
rather than named constants in an interface.

Arrays and Subtyping

Only primitive data and reference values can be
stored in variables. Only class and array types
can be explicitly instantiated to create objects.

Arrays and Subtype Covariance

Arrays and Subtype Covariance
• All reference types are subtypes of the Object type. This applies to classes,

interfaces, enum, and array types, as these are all reference types.
• All arrays of reference types are also subtypes of the array type Object[],

but arrays of primitive data types are not. Note that the array type
Object[] is also a subtype of the Object type.

• If a non-generic reference type is a subtype of another non-generic
reference type, the corresponding array types also have an analogous
subtype-supertype relationship. This is called the subtype covariance
relationship. This relationship however does not hold for parameterized
types.

• There is no subtype-supertype relationship between a type and its
corresponding array type.

Array Store Check

• An array reference exhibits polymorphic
behavior like any other reference, subject to
its location in the type hierarchy.

• However, a runtime check is necessary when
objects are inserted in an array, as the
following example illustrates.

Array Store Check

The following assignment is valid, as a supertype
reference (StackImpl[]) can refer to objects of its
subtype (SafeStackImpl[]):
StackImpl[] stackImplArray = new SafeStackImpl[2]; // (1)

Since StackImpl is a supertype of SafeStackImpl, the
following assignment is also valid:
stackImplArray[0] = new SafeStackImpl(10); // (2)

The assignment at (2) inserts a SafeStackImpl object in the
SafeStackImpl[] object (i.e., the array of SafeStackImpl) created at (1).

Array Store Check
Since the type of stackImplArray[i], (0 d i< 2), is StackImpl, it should
be possible to do the following assignment as well:
stackImplArray[1] = new StackImpl(20); // (3)

 //ArrayStoreException

At compile time there are no problems, as the compiler cannot
deduce that the array variable stackImplArray will actually denote
a SafeStackImpl[] object at runtime.
However, the assignment at (3) results in an ArrayStoreException
to be thrown at runtime, as a SafeStackImpl[] object cannot
possibly contain objects of type StackImpl.

Reference Values and Conversions

A review of Operators and Expressions on conversions is
recommended before proceeding with this section.

Reference values, like primitive values, can be assigned,
cast, and passed as arguments.

Conversions can occur in the following contexts:

• assignment

• method invocation

• casting

http://berkut.homelinux.com/pdf/Operators.pdf

The Rule of Thumb

• The rule of thumb for the primitive data types is
that widening conversions are permitted, but
narrowing conversions require an explicit cast.

• The rule of thumb for reference values is that
widening conversions up the type hierarchy are
permitted, but narrowing conversions down the
hierarchy require an explicit cast.

Reference Value Assignment Conversions
In the context of assignments, the following conversions are permitted :
• widening primitive and reference conversions (long <- int, Object <- String)
• boxing conversion of primitive values, followed by optional widening

reference conversion (Integer <- int, Number <- Integer <- int)
• unboxing conversion of a primitive value wrapper object, followed by

optional widening primitive conversion (long <- int <- Integer).

And only for assignment conversions, we have the following:
• narrowing conversion for constant expressions of non-long integer type,

with optional boxing (Byte <- byte <- int)

Reference Value Assignment Conversions
Object obj = "Up the tree";

// Widening reference conversion: Object <-- String

String str1 = obj;

// Not ok. Narrowing reference conversion requires a cast

String str2 = new Integer(10);

// Illegal. No relation between String and Integer.

Integer iRef = 10; // Only boxing

Number num = 10L;

// Boxing, followed by widening: Number <-- Long <-- long

Object obj = 100;

// Boxing, followed by widening: Object <-- Integer <-- int

Reference Value Assignment Conversions

The rules for reference value assignment are
stated, based on the following code:
SourceType srcRef;

// srcRef is appropriately initialized.

DestinationType destRef = srcRef;

Reference Value Assignment Conversions

• If the SourceType is a class type, the reference
value in srcRef may be assigned to the destRef
reference, provided the DestinationType is one of
the following:
DestinationType is a superclass of the subclass

SourceType.

DestinationType is an interface type that is
implemented by the class SourceType.

Reference Value Assignment Conversions

• If the SourceType is an interface type, the
reference value in srcRef may be assigned to the
destRef reference, provided the DestinationType
is one of the following:
DestinationType is Object.

DestinationType is a superinterface of subinterface
SourceType

Reference Value Assignment Conversions

• If the SourceType is an array type, the reference
value in srcRef may be assigned to the destRef
reference, provided the DestinationType is one of
the following:
DestinationType is Object.

DestinationType is an array type, where the element type
of the SourceType is assignable to the element type of the
DestinationType

Overloaded Method Resolution

• How the compiler determines which
overloaded method will be invoked by a given
method call at runtime?

• Resolution of overloaded methods selects the
most specific method for execution.

Overloaded Method Resolution

• One method is more specific than another
method if all actual parameters that can be
accepted by the one can be accepted by the
other. If there is more than one such method,
the call is ambiguous.

• The following overloaded methods illustrate
this situation:

Overloaded Method Resolution
private static void flipFlop(String str, int i, Integer iRef) { // (1)

 out.println(str + " ==> (String, int, Integer)");

}

private static void flipFlop(String str, int i, int j) { // (2)

 out.println(str + " ==> (String, int, int)");

}

Their method signatures are, as follows:

flipFlop(String, int, Integer) // See (1) above

flipFlop(String, int, int) // See (2) above

The following method call is ambiguous:

flipFlop("(String, Integer, int)", new Integer(4), 2004);

// (3) Ambiguous call.

 It has the call signature:

flipFlop(String, Integer, int) // See (3) above

Choosing the Most Specific Method
class Light { /* ... */ }

class TubeLight extends Light { /* ... */ }

public class Overload {

 boolean testIfOn(Light aLight) { return true; } // (1)

 boolean testIfOn(TubeLight aTubeLight) { return false; } // (2)

 public static void main(String[] args) {

 TubeLight tubeLight = new TubeLight();

 Light light = new Light();

 Overload client = new Overload();

 System.out.println(client.testIfOn(tubeLight));// (3) ==> method at (2)

 System.out.println(client.testIfOn(light)); // (4) ==> method at (1)

 }

}

Choosing the Most Specific Method

The algorithm used by the compiler for the resolution of
overloaded methods incorporates the following phases:
1. It first performs overload resolution without permitting

boxing, unboxing, or the use of a varargs call.
2. If phase (1) fails, it performs overload resolution allowing

boxing and unboxing, but excluding the use of a varargs
call.

3. If phase (2) fails, it performs overload resolution
combining a varargs call, boxing, and unboxing.

import static java.lang.System.out;
class OverloadResolution {
 public void action(String str) { // (1)
 String signature = "(String)";

 out.println(str + " => " + signature);

 }

 public void action(String str, int m) { // (2)
 String signature = "(String, int)";

 out.println(str + " => " + signature);

 }

 public void action(String str, int m, int n) { // (3)
 String signature = "(String, int, int)";

 out.println(str + " => " + signature);

 }

 public void action(String str, Integer... data) { // (4)
 String signature = "(String, Integer[])";

 out.println(str + " => " + signature);

 }

 public void action(String str, Number... data) { // (5)
 String signature = "(String, Number[])";

 out.println(str + " => " + signature);

 }

 public void action(String str, Object... data) { // (6)
 String signature = "(String, Object[])";

 out.println(str + " => " + signature);

 }

 public static void main(String[] args) {

 OverloadResolution ref = new OverloadResolution();

 ref.action("(String)"); // (8) calls (1)

 ref.action("(String, int)", 10); // (9) calls (2)

 ref.action("(String, Integer)", new Integer(10)); // (10) calls (2)

 ref.action("(String, int, byte)", 10, (byte)20); // (11) calls (3)

 ref.action("(String, int, int)", 10, 20); // (12) calls (3)

 ref.action("(String, int, long)", 10, 20L); // (13) calls (5)

 ref.action("(String, int, int, int)", 10, 20, 30); // (14) calls (4)

 ref.action("(String, int, double)", 10, 20.0); // (15) calls (5)

 ref.action("(String, int, String)", 10, "what?"); // (16) calls (6)

 ref.action("(String, boolean)", false); // (17) calls (6)

 }

}

Reference Casting

The type cast expression for reference types has the
following syntax:

 (<destination type>) <reference expression>

The following conversions can be applied to the operand
of a cast operator:

• both widening and narrowing reference conversions,
followed optionally by an unchecked conversion

• both boxing and unboxing conversions

Reference Casting

Boxing and unboxing conversions that can occur during casting
is illustrated by the following code:
// (1) Boxing and casting: Number <- Integer <- int:

Number num = (Number) 100;
// (2) Casting, boxing, casting: Object <- Integer <- int <- double:

Object obj = (Object) (int) 10.5;
// (3) Casting, unboxing, casting: double <- int <- Integer <- Object:

double d = (double) (Integer) obj;

The instanceof Operator

The binary instanceof operator can be used for
comparing types. It has the following syntax (note
that the keyword is composed of only lowercase
letters):

<reference expression> instanceof <destination type>

Polymorphism and Dynamic Method Lookup

• Which object a reference will actually denote
during runtime cannot always be determined at
compile time.

• Polymorphism allows a reference to denote
objects of different types at different times
during execution.

• A supertype reference exhibits polymorphic
behavior since it can denote objects of its
subtypes.

Inheritance Versus Aggregation

Inheritance Versus Aggregation
• Choosing between inheritance and aggregation to

model relationships can be a crucial design
decision.

• A good design strategy advocates that inheritance
should be used only if the relationship is-a is
unequivocally maintained throughout thelifetime
of the objects involved; otherwise, aggregation is
the best choice.

Inheritance Versus Aggregation

A role is often confused with an is-a relationship.
For example, given the class Employee, it would not
be a good idea to model the roles an employee can
play (such as a manager or a cashier) by inheritance
if these roles change intermittently.

Changing roles would involve a new object to
represent the new role every time this happens.

Basic Concepts in Object-Oriented Design

• Encapsulation

• Cohesion

• Coupling

Encapsulation
Encapsulation is achieved through information
hiding, by making judicious use of language
features provided for this purpose. Information
hiding in Java can be achieved at different levels of
granularity:
• method or block level
• class level
• package level

Cohesion

Cohesion is an inter-class measure of how well-structured
and closely-related the functionality is in a class.

The objective is to design classes with high cohesion, that
perform well-defined and related tasks (also called
functional cohesion).

The public methods of a highly cohesive class typically
implement a single specific task that is related to the
purpose of the class.

Coupling

• Coupling is a measure of intra-class dependencies. Objects
need to interact with each other, therefore dependencies
between classes are inherent in OO design.

• However, these dependencies should be minimized in order
to achieve loose coupling, which aids in creating extensible
applications.

High cohesion and loose coupling help to achieve the main
goals of OO design: maintainability, reusability, extensibility,
and reliability

Object-Oriented Programming

That’s all folks!

